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The problem of continuing ~.¢rmnetric periodic solutions of an autonomous or periodic reversible system with respect to a parameter 
is solved. Non-structurally stable cases, when the generating system does not guarantee that the solution can be continued, are 
considered. Three approaches are proposed to solving the problem: (a) particular consideration of terms that depend on the 
small parameter and the reflection of generating solutions; (b) the selection of a generating system depending on the small 
parameter; (c) reduction to a quasi-linear system which is then analysed using the first approach. Within the framework of the 
third approach the existence of a periodic motion is also established that differs from the generating one by a quantity whose 
order is a fractional power of the small parameter. The theoretical results are used to prove the existence of two families of 
periodic three-dimensional orbits in the N-planet problem. The orbit of each planet is nearly elliptical and situated in the 
neighbourhood of its fixed plane; the angle between the planes is arbitrary. The average motions of the planets in these orbits 
relate to one another as natural numbers (the resonance property), and at instants of time that are multiples of the half-period 
the planets are either aligned in a straight line---the line of nodes (the first family), or cross the same fixed plane (the second 
family). The phenomenon of a parade of planets is observed. The planets' directions of motion in their orbits are independent. 
© 1998 Elsevier Science Ltd. All rights reserved. 

1. P E R I O D I C  M O T I O N S  O F  A R E V E R S I B L E  S Y S T E M  

W e  c o n s i d e r  a n  a u t o n o m o u s  o r  2 n - p e r i o d i c  revers ib le  sys tem 

U' = U 0 ( u , v , t ) +  IXUI(IX, u , v , t )  (1.1) 

v'=Vo(u,v,t)+IxVt(Ix, u,v,t); UER t, v¢R n (l>-n) 

with fixed set M = {u,  v : v = 0}  [11] and small parameter Ix. Let us assume that the generating system, 
obtained from (1.1) by putting Ix -- 0, has a 2T*-periodic solution (T* -- n for a 2n-periodic system) 
symmetric relative to IVl 

u = q~(t), v = 0 ( t ) ;  q ~ ( - t ) =  q~(t), 0 ( - t ) = - 0 ( t )  (1 .2 )  

We seek the conditions under which, for sufficiently small Ix ,  0, system (1.1) will also have a solution, 
symmetric relative to M, that is identical with (1.2) at Ix = 0. In that case we shall refer to (1.2) as a 
generating solution. 

Let u(Ix, u S , . . . ,  u',!, t), v(Ix, u~ . . . . .  uT) denote a symmetric solution of system (1.1) with initial 
data uS . . . .  , uT, v* = 0. Then a necessary and sufficient condition for this solution to be 2T-periodic 
is [1] 

v~(Ix, u~ ..... u~,r)=o (s = 1 ..... n) (1.3) 

Hence it follows that in the general case the symmetric periodic motions of a reversible system (1.1) 
form an (m + 1)-familLy, where m ~> l - n. The parameters of this family are at least l - n of the initial 
data uT . . . . .  u7 and Ix; in the case of an autonomous system the parameter T must also be added. In 
the generating system 'we have Ix = 0 and the dimensionality of the family of periodic motions to which 
solution (1.2) belongs is m. Let  us assume that hi . . . . .  hm are the parameters of the family and that 
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solution (1.2) corresponds to parameter  values hT, • • • , h*. In an autonomous system the half- 
period T either depends on the parameters h i  . . . . .  hm and T(h'~ . . . . .  h*)  = T*, or T is added to h 1 
(j = 1 . . . . .  m) as a parameter.  

Express Eq. (1.3) as 

I 
o , ( o , u * . r * ) +  y (e~ + F,j)au~ +(G~ +G,)ar+(Q; +Q.,)Ix = o 

j=l  
(s = 1 ..... n) (1.4) 

(the asterisk indicates that the relevant quantities are evaluated at Ix = 0, u~ = u~ = (pj(0)), where the 
functions F~j, G~, Q~ vanish at Ix = 0, AT = T -  T* = 0, Au* = u ° - u* = 0. 

Obviously, ~s(0, u*, T*) = 0 (s = 1 . . . . .  n). In addition, in a periodic system one has to put AT = 0. 
Put 

Ra = rankllF,~ II, Ral = rankllFs~,G~ II (1.5) 

If Ra = n, system (1.4) is solvable for n of the quantities A u ] , . . . ,  Au 7. This means that the generating 
system, together with solution (1.2), has an (1 - n)-family of 2T*-periodic symmetric solutions, each of 
which is a generating solution [2]. In an autonomous system, the condition Ra = n guarantees the 
existence, for sufficiently small Ix, of an (l - n)-family of 2T-periodic systems of  (1.1) [3]. In that ease 
T is independent of Ix and u ° and lies in some interval containing T*. If Ra = n - 1, Ral = n, the period 
of the symmetric periodic solutions of system (1.1) depends on Ix (in the general ease, on u ° as well), 
and if Ix ~ 0 one cannot guarantee the existence of 2T*-periodie solutions• 

The following conclusion is important. In each of the situations considered: (a) Ra = n, (b) Ra = 
n - 1, Ral = n and the system is autonomous, contains a non-isolated case (in Poincar6's sense), but 
nevertheless the property of a reversible generating system to have a symmetric periodic motion is 
structurally stable if the perturbations are also reversible. 

Now let Ra = k < n. In that case, to fix our ideas, we solve the first k equations of (1.3) for u ~ , . . . ,  uT, 
and substitute the result into the remaining equations, obtaining 

t,,,(O,u~+~ ..... u~,T)+IxfAIx, u~+, ..... u~ , r )=O ( s = n - k + l  ..... n) (1.6) 

In the case of a 2n-periodic system (1.1) we have T = n, and when Ix = 0 system (1.3) has a 
family of solutions which depend on m arbitrary parameters. The same is true of system (1.6), 
and so 

v., (0,u~+ I ..... u~)-=0 ( s = n - k + l  . . . . .  n)  

Therefore,  if (1.2) is a generating solution of the generating system, its parameters h~ . . . . .  h *  must 
satisfy the equalities 

Pv(hl . . . . .  hm) . . . . . .  = 0  ( v = n - k + l  . . . . .  n)  (1.7) • • ~ f v ( O ,  Uk+l(hl . . . . .  hra) . . . . .  U l ( h  I . . . . .  hm),~) 

Subject to the condition 

• ..... hm, ll Ra* = rank Oh~. = n - k (1.8) 

system (1.6), considered for sufficiently small It, has a solution hi = hi(B), hi(O) = h* ( j  = 1, . ,  m ) .  
Thus Eqs (1.7) determine the parameter  values h~ . . . . .  h *  of a generating solution ff the latter satisfy 
condition (1.8). 

In an autonomous system, we distinguish two non-structurally stable cases: (1) Ra = Ral = k < n, 
(2) Ra = k, Rax = k + 1 < n, the first of which necessarily occurs when the half-period T of the family 
depends on hi . . . . .  hm. 

In the first case, we solve system (1.3) for u ~ , . . . ,  u~. The resulting equalities 
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Pv(h'~ . . . . .  h ln)mfv(O,u~+,(h~ ..... hm) . . . . .  u'[(h~ ..... hm),T*) = 0 ( v = n - k + l  ..... n) (1.9) 

must hold for the parameters h~ . . . . .  h*  of a generating solution. If at the same time one of the 
conditions 

IlO ,h  ..... hm 'lJ Ra* = rank ~ .  = n - k (1.10) 

II " " tl 
~Pv(h~ . . . . .  hm,T"  ) ~Pv(hl . . . . .  hm,T"  

Ra* = n - k - 1, R a ~  = r a n k  ~h--~. ' ~ T *  = n - k (1.11) 

also holds, then (1.2) :is a generating solution. If T is independent of hi ,  • • • ,  hm for the family under 
consideration, and (1.10) is satisfied, then the generating system, together with solution (1.2), has a 
family of T generating solutions including (1.2). 

In the second case we solve Eqs (1.3) for u~ . . . . .  u~,. As a result we obtain n - k - 1 equations of the 
form (1.8) to determine the parameters of a generating solution for which the rank of the Jacobian 
must equal n - k - 1. This last condition is equivalent to the requirement that Ra$ = n - k in (1.11). 

2. C O N T I N U A B I L I T Y  C O N D I T I O N S  

We first consider a periodic system. Equations (1.7) are the result of eliminating Au~ . . . .  , AuT, from 
the equations 

I 
Fs~Au~+QSp.=O ( s = l  ..... n) (2.1) 

/=l  

When ~ = 0 the partial derivatives ~ua/c3~f, ~gug~uf ( a , j  = 1 . . . .  , l; ~ = 1 . . . . .  n )  satisfy equations in 
variations set up for the generating system in the neighbourhood of solution (1.2). These equations are 

x = A-(t)x +A+(t)y (2.2) 

y ' = B + ( t ) x + B - ( t ) y ;  x e R  t, y c R  n 

where the plus (minus) sign denotes a 2n-periodic matrix with even (odd) functions. 
The fundamental solution matrix of system (2.2) with identity matrix of initial data (at t = x) is written 

in the form 

y  t ,x't 'll 
where Iz+n is the identity matrix of order l + n. Then [2] 

x±(-t ,0)  = +x±(t,0), y±(- t ,0)  = +y±(t,0) 

When t = 0 we have ua = u~, ~a = 0 (a  = 1 . . . . .  l; 13 = 1 . . . . .  n). Therefore 

~uj)0 =Scq' C~uJ J 0 = °  (ot, j = l  ..... l: ~=1 ..... n) (2.3) 

(5~. is the Kronecker delta). The solution of system (2.2) with initial data (2.3) is given by matrices 
x+(t, 0), y-(t, 0), where y-(t, 0) = II 3a~ Ou.* II Consequently, in (2 1) we have II F~ II - y - (n ,  0)  If 
ranky-(n, 0) = n - k, then l - k columns in the matrix y-(n, 0) may be equated to zero. Using the fact 
that a linear combination of solutions of a linear system is also a solution, we conclude that exactly I - 
k solutions exist such that at t = n the vector y- vanishes. If we now note that y-(0, 0) = 0, we can quickly 
establish the existence of l - k 2n-periodic particular solutions of system (2.2), symmetric relative to 
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the set M~ = {x, y : y = 0}. Then the matrix x+(2g, 0) has 1 - k simple eigenvalues equal to 1. Thus the 
matrix y+(2~, 0) has n - k such eigenvalues, and system (2.2) admits of n - k* (k* ~ k) 2~-periodic 
motions symmetric relative to the set MS = {x, y : x = 0}. 

Let 

s<,,=ll '+<''q<,, <<,,' <"ll s<0,=i,+n 
be a fundamental solution matrix of the system conjugate to system (2.2). Then St(t) contains 1 - k* 
2~-periodic solutions {P~x (t), q~x (.t)} (L = 1 , . . . ,  1 - k*), symmetric over the set {p, q: q = 0}, and n 
- k 2~-periodic solutions {pg(t), q~'v(t)} (v = 1 . . . . .  n - k), symmetric over the set {p, q: q = 0}. The 
relation between the solutions of conjugate systems yields the following equalities 

I n 

p~(X)= )". x ~ j ( t , X ) p ~ ( t ) +  ~, y ~ ( t , ' O q ~ ( t )  
ot=l ~=1 

I n 

qA('C) = cL=l ~ xaj(t"C)P~(t)+~--I Y~(t"C)q~l'(t) 

t n 

1 n 

q ; ( ~ ) =  $". xg(t,~)p~v(t)+ ~, Y~(t,i)qp+(t) 
a = l  15=1 

( j = l  ..... l; s = l  ..... n; ~.=1 ..... l - k * ;  v = l  ..... n - k )  

From these we derive the relations 

p~v(O)= ~, y~(g,O)q~vOt)=O, 
[3=1 

q+ (x)= ~ + + 
fJ= l Y~s ( lt "C )q sv ( lt ) 

n 

p.~,(X)= ~="=l= Y~J(~"t)q~v(g) 

needed to eliminate Au~, . . . .  Au~ from (2.1). 
From the complete solution of our problem, we note that the partial derivatives of u and v with respect 

to It form a particular solution of the linear system 

x" = A -  (t)x + A + (t)y + Ul(O, Ip,ql, t) (2.4) 

y = B + ( t ) x + B - ( t ) y + V l ( O ,  l o , i l l ,  t )  

with zero initial data [4]. Therefore 

• = * * * + 

~it ! v=i 

where UT(h*, x) and VT(h*, x) denote the result of substituting IX = O, u = lp(x), v = dtl(x), t = "c into 
the functions U1 and V1, respectively. Since solution (1.2) belongs to some family parametrized by h 
and corresponds to the values h*, it follows that these functions also depend on h*. 

Conditions (2.1) now become 

y~(n,0)Au~ +It  Uj*,,(h*,z)y~,,(g,x)+ ~ * * + j=i S--, ~s (h  'X)Y~s(~"C) d x = 0  ([3=i ..... n) 

Multiplying these equalities by q~v(g) and summing over [3, we get 
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Pv(hi ... . .  h * ) -  I Ui*x(h*, 'c)p~( 'c)+ ~ Vl~(h*,x)q~'v(x) d r = 0  ( v = l  . . . . .  n - k )  
0 x = l  5 = 1  

(2.5) 

Theorem 1. Le t  (1.2) be  a 2n-per iodic  reversible  system (1.1) cor responding  to p a r a m e t e r  values  
h ]  . . . .  , h*,  and  let R a  = k < n. T h e n  it is a genera t ing  solution, p rovided  tha t  equali t ies  (2.5) hold  
and Ra* = n - k. 

Example 1. Resonance oscillations in the Dulling problem [4, p. 32]. The Duffing equation in this ease 

x + x = ll(~.sin t + ax + ~lx3 ); ~.,a,)'=const 

is reversible with fixed set {x,x" : x -- 0}. At B = 0 it has a one-parameter family (parameter h) of symmetric periodic 
solutionsx = h sin t. In sy.~;tem (1.1), therefore, we have l = n = 1, Ra = 0. To determine whether a periodic solution 
exists when It * 0, we set up Eq. (2.5) 

+ ah* + 0,75~h .3 = 0 

By Theorem 1, for each simple root h* of this equation we have a generating solution of a linear oscillator. 
Note that only symmetric periodic motions are defined for the Duffing equation [4]. 

In the a u t o n o m o u s  system (1.1), the equat ions  defining the p a r a m e t e r s  of  a genera t ing  solut ion 
are  

l 

~., Fs~Au;+GsAT+Q~B=O (s=l ..... n) 
j=l  

I f  Ra* = Ra$ = n - k, then  G ' w i l l  be l inear  combina t ions  of  Fs~. H e n c e  it follows f r o m  the equali t ies  

tl 

Pjv( 0)= Z - * + * f~=l yf~j(T ,O)ql3v(T ) = O ( j = l  ..... 1; v = l  ... . .  n - k )  

that 

G~qf~v(T )=0  ( v = l  . . . . .  n - k )  
13=1 

As a result  we obtain  the  following equat ions  for  the p a r a m e t e r s  of  a genera t ing  solut ion 

7[:t .+-- } * * * * * * --  * * + 
Pv(hl ...... h., ,T )=- Ul,,(h .x)p.,v(x)+ Vls(h ,x)qsv(x) dx=O 

8=1 

( v = l  . . . . .  n - k )  

In the case Ra* = k, Ra$ = k + 1 < n we have 

(2.6) 

Gf~qf~v(T )= Y~ Voi~(h ,T  )q[sv(T ) 
f l=l 13=1 

(where  V~ is the result  o f  substi tut ing solution (1.2) into the funct ion V0) and  the  equa t ions  for  
de te rmin ing  ~/(AT = ~ )  and h~ . . . . .  h *  are 

Pv(h; ..... hm,T*,y)='y ~ Vo~(h , "  " T ' )q l sv ( r  + " ) +  
15=1 

7r' .+.. • • + 7  + 12 Ut~(h*,x)P,,'-v(x)+ Vls(h ,x)qsv(x) dx=O (v=l ..... n-k) 
0 L ~ : = I  8 = 1  

(2.7) 

Theorem 2. Le t  (1.2) be a 2T*It-periodic solut ion a u t o n o m o u s  sys tem (1.1) co r respond ing  to a pa ra -  
m e t e r  values  h $ , . . . ,  lira*, and let R a  = k < n. Then ,  if Ra l  = k, it is a genera t ing  solut ion p rov ided  
that  equalities (2.6) hold and Ra* = n - k or  Ra* = n - k - 1, Ra$ = n - k. I f  R a  = k, Ra l  = k + 1 < n, 
the p a r a m e t e r s  of  the genera t ing  solution and the correct ion AT are  de t e rmined  f r o m  sys tem (2.7) if 
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* * * * + * 8Pv(hl ..... hm'r 'Y) ~. Vol3(h ,T )qlsv(T ) = n - k  Rat = ~ ' I~=~ 

3. THE C H O I C E  OF A G E N E R A T I N G  SYSTEM 

The problem of continuing symmetric periodic motions in non-structurally stable cases may be reduced 
to the structurally stable case by suitable choice of a generating system which depends on a small 
parameter. Examples of such solutions of the problem are known [5, 6]. 

Let us consider an autonomous or 2rt-periodic reversible system 

u =Uo(e,u,v, t )+ixUi (e,~t,u,v,t) (3.1) 

v =Vo(e,u,v, t)+ixV l (e, ix,u,v,t); UE~ l, VER n (l>~n) 

with fixed set M = {u, v : v = 0} and small parameters e and IX. Suppose that for Ix = 0 system (3.1) 
has a 2T*-periodic solution, symmetric relative to M 

u = lO(e,t ), v = II/(e,t); eC(e,-t) = lp(e,t), IlJ(e,-t) = -~ (£ , t )  (3.2) 

where T*(e) = n in the ease of a 2n-periodic system, and when e = 0 solution (3.2) belongs to an m- 
family. It is interesting to determine for what class of functions ~t = Ix(e) the question of whether system 
(3.1) admits of a symmetric periodic motion can be solved only by the generating system obtained from 
(3.1) by putting IX = 0. 

Necessary and sufficient conditions for a symmetric solution to be 2T-periodic have the form (1.3), 
but now the left-hand sides also depend on e. Put 

o * ~p(E,0)=u*, Auj=u~-uj ( j = l  ..... l), AT=T-T*(e) 

and write (1.3) as 

I 
g [F,~(e)+F, jlAu°j +[G,~(e)+G, IAT+IXvI,(e, IX, Au°,AT)=O 

j=l 
(s = 1 ..... n) (3.3) 

where the functions Fsi , Gs vanish for Au* = 0, AT = 0. 
Let Ra = rankll F~(0) II = k < n. Then we may assume without loss of generality that 

Fs~(e)=E[a.q+Fs~(e)] ( s = n - k + l  ..... n; j = l  ..... l) 

where the coefficients asj do not depend on e and the functions ~ ( e )  vanish when e = 0. In the case 
of a 2n-periodic system we have AT = 0 and the last n - k equations in (3.3) take the form 

Y. asj 
j=l 

Therefore, if tx = o(e) as e ---) 0, system (3.3) is solvable for n of the quantities Au~ . . . . .  AuTprovided 
that rankll F~(e) II = n, taking into account terms linear in e. 

An autonomous system (3.1) is investigated in the same way. 
Put 

r = ra~ll ~'~<0' l a s j  , r I = rankl F~(0)asj G~(O) I b s  (3.4) 
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/~2v ,(e, ix, u*,T / / ~zo,(e, la, u*, T) / 
asJ = ~ " ~ J ~  o' b, = ~, " "O-~"~E "o 

T h e n  the following t h e o r e m  holds. 

Theorem 3. Suppose  that  when  IX = 0 system (3.1) has a symmetr ic  per iodic  solution (3.2) which, when  
e = 0, belongs to an m-fami ly  (m ~> n - k). I f  also r = n, then  system (3.1) has  a per iodic  solution,  
symmetr ic  relative to the fixed set  M, for  any per tu rba t ions  such that  Ix -- o(e)  as e ---> 0. In  a u t o n o m o u s  
system (3.1), the existence of  a per iodic  solut ion for  per tu rba t ions  satisfying this condi t ion is also 
gua ran teed  when  rl  = n. 

Remark. In Sections 1 and 2 it was the part of system (1.1) linear in It that was taken as the generating system 
for (3.1); however, no symmetric periodic solution of the latter is known. Theorems 1 and 2 enable us to solve the 
question of whether (1.1) has a periodic solution without having to calculate such a symmetriesolution. 

Example 2. Generalizathgn of Hill's problem. The planar orbits of a passively gravitating point in the neighbourhood 
of one of the main bodies in the circular restricted three-body problem are described by a reversible system [6] 

x" - 2my' + kxp -3 = m2 X (m,x,y) (3.5) 

y'" + 2rex" + kyp -3 = m 2 Y(m,x,y), p2 = x 2 + y2, k = const 

with fixed set M = {x, y, x ' ,y :y = 0,x" = 0} and small parameter m. This system contains Hill's problem concerning 
the motion of the Moon [7], which is obtained by setting X = 3x, Y = 0 in (3.5). 

When m = 0 system (3.5) has a circular particular solution, but it is not a generating solution. Lyapunov [5], 
who presented the first rigorous proof of existence for nearly circular orbits in Hill's problem, used a generating 
system which depended on the parameter m. In so doing he verified the conditions for continuability taking into 
account terms linear in m. 

As the generating syste.m for problem (3.5), let us take the system 

x"-2my" +kxp -3 - m 2 x  = 0, y'" +2myx'" +kyp -3 -m2y =0 (3.6) 

which admits of circular orbits 

x=acostot, y=asintot, ka-3=(to+m) 2 (3.7) 

symmetric relative to the set M and belonging to a family of elliptical orbits. To answer the question of whether 
system (3.5) has orbits close to (3.7), we set 

x + iy = a exp(itot )(1 + a + i13) 

Then, in the linear approximation with respect to a and 13, we have 

a'" +(to+ra)2a-2(to+m)T=O, fl" =y-2( t0+m)c t ,  Y" =0  (3.8) 

and corresponding to the fixed set M we have a set {a, [3, a ' ,  y:  13 = 0, a" = 0}. Hence the zero roots of  the 
characteristic equation do not obstruct continuation with respect to the parameter [2]. The remaining pair of roots 
__.i(to + m), evaluated to terms linear in m, does not contain the critical roots, which are +.ipto (p ~ N). Consequently, 
we have r = n = 2 in (3.4), and for small m * 0 system (3.5) has periodic orbits, symmetric relative to M, whieh 
are close to the circular orbits (3.7). 

4. R E D U C T I O N  T O  A Q U A S I - L I N E A R  S Y S T E M  

Non-s t ructura l ly  stable cases also arise w h e n  it is no t  known in advance  if solut ion (1.2) of  the 
generat ing system belongs to some family. Moreover ,  the results of  Sections I and 2 enable  us to establish 
the existence of  per iodic  mot ions  only in an O( ix)-neighbourhood of  a genera t ing  solution, though  we 
know [4, 8, 9] o f  mot ions  tha t  differ  f rom genera t ing  mot ions  by quanti t ies  O(Ix~s), s ~ N. 

These  difficulties may  be  solved by reduct ion to the p r o b l e m  of  extending solut ions of  a l inear  system 
with respect  to a pa r ame te r .  T h e  approach  p roposed  below is also applicable,  with obvious  correct ions,  
to systems of  a genera l  form.  
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Suppose it is known that the generating system obtained from (1.1) with Ix = 0 admits of a 2g-periodic 
solution (1.2). Put 

u = q~(t)+x, v = ~ ( t ) ÷ y  

Then we obtain a 2n-periodic system for the variables x, y 

x = A - ( t ) x + A + ( t ) y + X ( x , y , t ) + I x U i  (tl, q~ + x,t~ + y,t) 

y = B + ( t ) x + B - ( t ) y + Y ( x , y , t ) + I x V l  (Ix, q~ + x ,~  + y,t) 

(4.1) 

which is reversible with fixed set M 1 -- {x, y : y = 0} [10]. Obviously, the linear part of  system (4.1) 
with respect to x, y is identical with (2.2) when ~t = 0. 

We now apply the change of variables (x, y) --> (ex, ey), e = Ixo, 0 < t~ ~< 1. This gives system (1.1) 
the form 

x =A-(t)x+A+(t)y+e~[Xo(x,y , t )+eX1(e,x ,y , t )]+Ixl-aUl(Ix ,  q~+ex, d/+~.y,t) (4.2) 

y" = B+ (t)x + B-(t)y  + £~'[Yo(x,y,t)+ EYl(E,x,y,t)]+Ixl-°Vl(la,~p+ ~..x,d/ + F.y,t) 

(~, I> 1, X ~ N). If Ra = k < n, the new generating system obtained from (4.2) by putting ~t = 0, e = 0 
admits of exactly l - k 2n-periodic solutions syrmnetric relative to M1 

xj=tpja(t),  ys=Wsa(t) ( j = l  ..... l; s = l  ..... n; o~=1 ..... l - k )  

Thus, this system has an (l - k)-family of parameters hi . . . . .  ht-~ of periodic solutions 

l - k  l - k  

xj = q~(h,t) -= E h~pjct(t), Y~ = ~s(h,  t) - E h ~ / ~ ( t )  (4.3) 
0 t = l  0 t = l  

Suppose that not all the integrals (2.5) vanish for solution (1.2) under consideration. Then we set o 
= 1/(1 + ~) and consider the equations 

* - -  ~ 4-  Pv(h)--- ~ Xa(h,x)pav(x)+ ~Y~(h,X)qlsv(X) =0 ( v = l  ..... n - k )  (4.4) 
oLa=l p=t j 

X*(h,t) - Xo(~O* (h,t), d/*(h,t),t)+ Ui (0, q~(t ), d/(t),t) 

Y*(h,t)-- Yo(q~*(h,t), d/*(h,t),t)+Vl(O,q~(t),d/(t),t) 

where the functionsp~v(X), q~v(X) have the same meaning as in (2.5). Applying the results of  Sections 
1 and 2 to system (4.2), we obtain the following theorem. 

Theorem 3. To each root h* of Eq. (4.4) satisfying the condition 

ran  ..... ht*. k) 
7 - l= ._k  

(4.5) 

there corresponds a 2n-periodic solution, symmetric relative to M1, of system (1.1) 

0 * * (~  u=~o(t)+~t°~o'(h*,t)+o(ix°), v=O(t)+ix • (h ,t)+o(ix ), o = ~  

which is identical with the generating solution (1.2) at Ix = O. 

The following example indicates a possible generalization of Theorem 3. 

1 

1+~, 

Examp/e 3. The system of equations 
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x'" +x =(otx 4 +y.2 +pa)cost, y'" +y =(I~ s +x3y+pb)cost (4.6) 

(a, 15, a, b = const) is a reversible system of type (4.1) with fixed set {x, y, x', y" : x" = 0, y" = 0). We make the 
change of variables (x,y) ~ (~, e~y), e s = p in (4.6). This gives 

x" + x = It3(ooc 4 +y.2 +,~a)cost, y'" +y = l~3(l~y s +x3y+b)cost (4.7) 

When e = 0 system (4.7) admits of two families of symmetric periodic motions: x = A cos t, y = Bcos t. Hence 
Eqs (4.4) have the form 

5t~4 +6B 2 =0, 5A3B+8b=O 

and when ct < 0 these equations have simple solutions equal, for example, toA = -T-l, B ffi __.1 for (x ffi -6/5, 
b ffi 8/5. Consequently, fiar these parameter values system (4.6) has periodic solutions 

x = -T-l.t I/5 cost + o(l.t I/5 ), y = _+.i.t 2/5 cost +o(g 215 ) 

Let  us assume now that solution (1.2) satisfies condition (2.5). In that ease system (2.4) admits of a 
family of symmetric periodic solutions 

.r,j =q)j(h,t)+Oj(t), Ys =~s(h,t)+Xs(t); j = l  ..... l; s= l  ..... n (4.8) 

Set 6 = 1 in system (4.2). Then in each of the two possible cases 

j. 

2) ~,=1, X*-X~.  +[X0(x,y,t)]., Y*-Yx +[Y0(x,y,t)] 

(the asterisk on the bracketed expressions means that the derivatives are evaluated at Ix = 0, u = q~(t), 
v = ¥(t), and x, y are replaced by (4.8)) the validity of conditions (4.4) and (4.5) guarantees the existence 
of solutions of  system (1.1) 

u = q~ (t)  + IX[q~* (h*,  t) + 0( t ) ]  + o(~t), v = 0 ( t )  + ~t[0* (h*,  t) + X(t)]  + o(~t) 

Remark. As in Sections 1 and 2, a more detailed investigation, omitted here, can be carried out for autonomous 
systems (1.1). 

5. A Q U A S I - L I N E A R  S Y S T E M  

The theory of  oscillations for a quasi-linear reversible system is constructed in the same way as for 
a system of general foma [4]. When that is done, however, one must consider symmetric periodic solutions 
of the linear system and use the results of Section 2. Omitting these constructions, we will confine our 
attention below to one result for an autonomous reversible system 

x" = Ay +IJ.X(p,x,y) 

y, = Bx+l.tY(l.t,x,y); x~R t, yERn(l ~>n) (5.1) 

(A and B are constant matrices) with fixed set (x, y : y = 0}; the result in question has no analogue in 
a system of general form. 

The matrix A has at most I - n linearly independent rows, and an elementary transformation reduces 
A to a form in which 1 - n rows are filled with zeros. Let  ~ denote a variable corresponding to these 
rows. Then the equation for y is 

y ' = B . x + B , ~ + l . t Y ( p , ~ , x , y )  ( ~ R  t-n, x ~ R  n) 

Assuming that det B. #: 0, we now replace the vector x by x + B;-1BI~. After all the necessary algebra, 
system (5.1) takes the torm 
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6" = la-~-(ix, lg x, y) 

x" = A,y + IxX(B, gx ,  y ) 

y" = B,x + IXY(B,~,x,y); eRt-", x ~ R  n, y ~ R  n 

(5.2) 

with fixed set M* = {~, x, y : y = 0}. 
Suppose that when Ix = 0 the characteristic equation of system (4.2) has a pair __.ira of pure imaginary 

roots, and no further roots of the form +_ipta (p  ~ N). Then the generating system obtained from (4.2) 
by putting g = 0 admits of a unique family 

~s = hs, x j  = o t j h c o s t o t ,  y j  = ~ j h s i n t o t  (s = l . . . . .  l - n ;  j = l . . . . .  n)  (5.3) 

of periodic solutions symmetric relative to M*. The parameters of this family are hi . . . . .  ht-n, h, and 
I~ is one of the solutions of the system 

-aco = A,IS, I~co = B ,a ,  ce = (oq ..... oh,) T, 13 = (1~1 ..... lSn) r 

Let us consider the question of the existence of periodic motions of system (5.1) when g ,  0. The 
existence of the family of solutions (5.3) implies that Ra < n in (1.5). When Ix = 0 the equation for 
separates from the other equations, and the subsystem for x and y admits of only one family of periodic 
motions. Thus, Ra = n - 1. Let us calculate 

y)UC / 03) = hto~j ( j  = 1 . . . . .  n)  

noting that at least some of the numbers I~j must be non-zero. Without loss of generality, we may assume 
that only one coefficient does not vanish, say ~j; this can always be achieved by using a suitable linear 
transformation of the variablesys. Hence we immediately conclude that Ral = n in (1.5). 

Theorem  4. If rankB = n in the quasi-linear autonomous reversible system (5.1), then for every 
pair _+ito of roots of the characteristic equation there is a 2T(ix)-periodic family, with parameters 
hi ,  . . . , hi_n, h of solutions symmetric relative to the set {x, y : y = 0}, where T(0) = ~/to, provided 
none of the other roots is equal to +_ipo~ (p ~ N). 

Corollary (the L y a p u n o v - B r y u n o - D e v a n e y  theorem) .  If the characteristic equation of the reversible 
system 

x ' f A y + X ( x , y ) ,  y ' = B x + Y ( x , y ) ;  x e R  t, ye i~n  (l>~n) 

X(x , -y )  = -X(x ,  y), Y(x , -y )  = Y(x, y) 

(A and B are constant matrices and X and Y are non-linear terms) has a pair of pure imaginary roots, 
and none of the other roots is equal to + _ i p o ~  ~ N), rank B = n, then the (1- n + 1)-family of Lyapunov 
periodic motions adjoins the zero equilibrium position. 

Indeed, we make the change of variables (x, y) ~ (lax, gy). Then the problem is that of continuing 
a periodic solution of the quasi-linear system (5.1) with respect to the parameter. 

6. T H R E E - D I M E N S I O N A L  P E R I O D I C  O R B I T S  
IN THE N - P L A N E T  P R O B L E M  

Let us consider the basic problem of celestial mechanics--the motion of a mechanical system consisting 
of N + 1 point masses S, Pt, • • • ,  PN that attract one another according to Newton's law. We shall 
assume that the mass of the main body S is considerably greater than the masses of the bodies Pj; we 
are interested in the question of the existence of periodic orbits in this N-planet problem. 

Studies of this problem are rare. Some consideration has been given [13] to planar orbits that are nearly circular 
and are closed in a frame of reference rotating at constant angular velocity (orbits of the first kind). The existence 
of symmetric periodic orbits of the first kind has been proved [14], as has that of orbits that are nearly elliptical 
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and are closed in a stationary frame of reference (orbits of the second kind). A result concerning the existence of 
three-dimensional periodic orbits (orbits of the third kind) has also been formulated [3]. We now present a proof 
of that result, based on the theory of Sections 2 and 4, and estimate, in terms of the small parameter, the degree 
to which the orbit of each planet Ps is nearly planar. 

The motion of each planet Ps will be considered in a frame of reference with origin at S, the main 
body. Then the position of Ps is determined by a triple of Cartesian coordinates (~, rls, ~). The equations 
of motion of such a system are known [15]. In the system of equations thus obtained we make the change 
of variables 

xs = ~s, Ys = rls cos tps + ~s sin tps, Zs = -rls sin % + ~s cos % (s = 1 ..... N) 

with arbitrary parameter Cs. This gives 

d2ws + ksws 
at 2 r 3 = IXWs(w,~o ) (s = ! ..... N) (6.1) 

Here ws denotes the variablesxs, ys, zs, ks is the product of the gravitational constant and the total mass 
of the bodies S and Ps, rs is the distance from S to P~, IX is the ratio of the largest planetary mass to the 
mass of $ (IX "~ 1), and Ws is the right-hand sides of the equations forx~,ys and zs (throughout, summation 
will always be performed f romj  = 1 t o j  = N, wherej  ¢ s) 

• [xs-xj x j] 
J 

fYs [ I  1 ]  l 
Y~ = g i'c; l _--f - I _"~ - 731[Yj c°s(q)s - q)j) + zs sin(% - q)j)] 

J [';2 L r,) rj j 

_ l . l z , + r l  11 . )]t t',, k ,sj ' i  J - q) j  ) - zs c o s ( %  - 
J 

rs~ = (x., - x j  )2 + (Ys - Y j )2 + (Zs - Zj )2 + 2[(ysy j + zszj )[1 - cos(% - ~ j ) ] -  

- ( Y s Z j ' - Y j Z s ) S i n ( % - ~ j ) ] }  ( s , j = l  . . . . .  N; s ~  j )  

(6.2) 

System (6.1), (6.2) is invariant with respect to each of the transformations (t, x, y, z) ~ (-t, x, -y, -z) 
and (t, x, y, z) ~ (-t, --x, y, z), that is, it is linearly reversible of type (1.1), with two fixed sets M1 = 
(x,y, z, x', y', z" :x" = 0, y = 0, z = 0} andM2 = (x, y, z, x', y', z': x = 0, y" = 0, z" = 0}. 

At IX = 0 system (6.1) splits into N two-body problems, each of which describes an unperturbed Kepler 
problem. The resulting: orbits are second-order curves 

• ( rs (0s) L, r*2 dos = c 2 _ c; 
= " , s ( 0 , ) - -  cs, ~.s - s - - ,  e ~ - l l + h s - : - v /  

1 + e s cos 0 s dt k s t k;) 
(6.3) 

where cs and hs are the area and energy constants of the sth problem. The motions take place along 
ellipses if 0 < l e~ I< 1. 

Wemay assume without loss of generality that the motions (6.3) take place in the (xs, Ys) planes, that 
is, z, -- 0 in each motion. In the frame of reference ~q~, therefore, each of the planets Ps has its 
own orbital plane (U~), which makes an angle % with the ~rl plane. For the family symmetric 
relative to the set M1 the semi-major axes of the ellipses coincide with the ~ axis, while those in the 
second family lie on the straight lines ~ = 0, rb cos ~os + ~ sin tps = 0; s = 1 . . . .  , N (Fig. 1). For the 
first family 

x s = r~*(O.,)cos0s, Ys = r~*(0s)sin0s, z~ = 0 (6.4) 

and for the second 

Xs =r.~(Os)sinOs, Ys =rT(O.~)cosO., zs = 0  (6.5) 
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Fig. 1. 

These motions are periodic in the sth subsystem. For the whole generating system, solution (6.3) forms 
a 2N-parametric family, relative to the initial data (cs, hs), of conditionally periodic motions. Among 
these there are periodic motions, for which the following conditions hold 

_ ~ - ~ _  
n s -_-Syi - f - l so~ (l s ~ N ) ,  ~.s = a s ( l ' e Z s )  ( s = l  . . . . .  N )  (6.6) 

(,is 

where ns are  the average motions, as are the semi-major axes of  the ellipses and to is a certain positive 
number. Relations (6.6) imply that the average motions relate to one another like integers. 

We thus have N - 1 conditions (6.6) imposed on the 2N constants cs and hs. Consequently, we have 
an (N + 1)-family, dependent  on the initial conditions, of  periodic motions. Now, taking into account 
that system (6.1) depends on N - 1 essential parameters q~s - q~j, whose values are also determined by 
the initial data, we obtain a 2N-family of symmetric elliptical motions of the generating system. There 
are six such families since, when the change of variables (~, ~, ~) ~ (x, y, z) is made, (~, 11) may be 
replaced by any of three pairs, and for each pair there are two versions, (6.4) or (6.5). We also note 
that conditions (6.6) are imposed only on the semi-axes of the ellipses, not affecting the eccentricities 
es, while the direction of  motion of each planet in its ellipse is determined independently. Symmetric 
periodic orbits obtained by continuation with respect to a parameter ~t of the elliptical solutions (6.4) 
or (6.5) will be called periodic orbits of  the third kind if not all the differences 9s - q~: (s ~ j )  
vanish. 

To fix our ideas, let u s  consider solution (6,4) of the generating system, assuming that in its 
neighbourhood 

Then we obtain 

x s + iy s = rs* (0 s ) exp(i0 s )(1 + Ps), xs - iys = rs exp(-i0s )(1 + qs)  

Zs = rs (Os)os  (s = 1 . . . . .  N )  

d2 ps ~ 2i  @ s  ÷ l + Ps 

dO 2 dO s 1 + e s cos 0 s 

*3 -iO s ~ ' e  • 
R s ( P , q , o r ) + g T ( X s  + i Y s ) = O  

1 + qs r,*3ei0s 
d2qs 2i dqs .~ Rs(p,q,or)+la's----~ - ( X  s - i Y ~ ) = O  
dO~ dO s 1 + e s cos 0 s c s 

d2os R s(p,q,or) r s _,  
d0 2 I- 1-1 Os+l.t_--~-z s = 0  

1 + e s COS 0 s C s 

(6.7) 

(6.8) 
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R s (p, q,or) = [(I + Ps)(l + q,) + Cy2s ] - 3 / 2  - -  l (S ----" I ..... N) 

where X~s, Y~, Zs* are obtained by substituting the new variables p~ qs and as as in formulae (6.7) into 
the functions Xs, Ys and Zs, respectively. 

The independent vz~riable in system (6.8) is the angle 0 = cot, the right-hand sides are  2n-periodic 
functions of 0, and +0s = l,(0) + f,(lsO) [15], where fs is a Fourier series in IsÙ which is absolutely 
convergent provided [ e I < e (the Laplace limit), and the sign of 0s is the same as that of cs. Bearing 
this in mind, it is nevertheless convenient to retain the angle 0s as the variable in the sth subsystem for 
our further discussion 

We also note the important fact that system (6.8) is reversible and invariant with respect to the change 
of variables (t, p, q, if) --~ (t, q, p, --~). 

We need one more change of variables: ~s = EZ~ (s = 1 . . . . .  N), E 3 = B. Then the equation for Z, is 

do2 + I + Z, + ~2~s + ~3Os (s = I ..... N) 
1 + e s cos 0 s 

r; 3 __ , r  1 1 ] ~ sinOj 
@s = ~ Z kj [--~- - --~-[ sin(q~, - ¢pj) 

c~ Lr~) rj j 1 + e, cose~ 

,:Y,-,..l,';x, ( l l ). ] 
• , = ~ 2, ~j I ~":T"- l~-y - _-3"I') Xj cos(% - q~j) 

J ~, Lr~ kr~) rj) 

Hence, also using the first two groups of Eqs (6.8) and setting e = 0, we obtain the generating 
system 

d2ps 

d2 q~ 

d2z, 

do. , 

__+2idP, + l+p, R~ =0 
dos 1 + e s cos 0 s 

_ 2 i d q ,  + l+q~ R* =0  (6.9) 
dO, l+e ,  cosO, 

I ] + l+l+escos0' Zs =0, R~ =[(l+ps)(l+q,)]-3/2-1 (s=l ..... N) 

It is obvious that the subsystem of equations forp, and qs splits off the equations for Z,- This subsystem 
has a unique (zero) periodic solution if a finite number of eccentricities are excluded from consideration 
[14]. Thus, the generating system (6.9) admits of a unique family of periodic solutions, symmetric relative 
to the set MT = {p, q, X, P', q', X':P = q, P' = q', X = 0} 

p.,. = 0 ,  qs = 0 ,  Z, =assinOs(as =const ) ;  s = l  . . . . .  N (6.10) 

The dimension of the fixed set M] is 3N--half the dimension of the phase space. In the plane problem 
(Zs = 0; s = 1 , . . . ,  N) the solution p, = qs = 0 (s = 1 . . . . .  N)  is a generating solution [14] and Ra = 
2N; hence in system (69), considering solution (6.10), we also have Ra ffi 2N < 3N. 

We will now determine the conditions for the continuation of solution (6.10) with respect to e, using 
the theory presented in Section 4. The equations for Z~ do not contain terms linear in c. The terms of 
order e 2 have the form 

Uls = 3Z3 ~- O, (s = 1 ..... N) 
2(1 + e, cos 0,) 

It therefore follows from (4.4) that the amplitudes I ~ I of the generating solution must satisfy the 
equations 

! e,do • 
a~ I~COS0--'-s=A, 

(6.11) 
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c .r  i 1 lr;sin(~Z~_y) 
A~ = o~gs(O)sinOssinOjdO' gs(O)= --wZk~l  L sj r~ 3"j " --l+ejcosOj 

*2 *2 *2 * * r~j = r s + rj - 2r s rj [cos0 s cos0 /+s in0  s sin0j cos(gs - g j ) ]  (s = 1 ..... N) 

It is obvious that if A* ~ 0 (s = 1 . . . . .  N), all the roots ~q of Eq. (6.11) are simple, so that the 
continuability conditions of Theorem 3 are satisfied. 

The integrals A~* depend on the 2N parameters e~, ~s - tpl (s = 1 , . . . ,  N), to. In the space of these 
parameters the condition Aj* = 0 defines a 2N - 1-dimensional manifold for which (6.10) is not a 
generating solution. For fixed eccentricities e~ and frequency to the conditionA 7 = 0 defines the planes 
for which the problem of the existence of three-dimensional periodic orbits requires further investigation. 
In any case, almost all three-dimensional orbits (6.4) and (6.10) are generating motions. 

Analogous calculations from the family (6.5) lead to the problem of continuation with respect to the 
parameter e of periodic solutions p~ = 0, qs = 0, Zs = ~scOS0s (l~s = const), s = 1 . . . . .  N, which are 
symmetric relative to the fixed set M~ = {p, q, X, P', q', X': P = q, P = q', X" = 0}. 

In these circumstances the amplitudes 113s I of the generating equation satisfy the equations 

3 ~ !  ICOS4 0 s d 0 +  e~ cos 0 s = B~, B~ = 0Jgs(0)c°s0~c°s0jd0 

We can now determine the form of the three-dimensional orbits more precisely. In the first 
approximation with respect to e we obtain 

x, .=r~(Os)cosOs+O(e2),  ys=r~(Os)sinO~+O(e2),  Zs=eOtsr~(Os)sinOs+O(e 2) (6.12) 

x,=r~(O~)sinO,+O(e2) ,  y ,=r: (O, )cosOs+O(e2) ,  z ,=efJ~r~(O,)cosO,+O(e 2) (6.13) 

for cases (6.4) and (6.5), respectively. Hence it follows that when ~t ~ 0 the symmetric periodic orbits 
lie in an O(~tIla)-neighbourhood of the planes Fls. These motions are 2n/to-periodic with respect to the 
time t. 

Theorem 5. For sufficiently small ~t = max~{MJM0}, the N-planet problem of a main body with mass 
M0 and planets Px . . . . .  PN with masses M1 . . . . .  MN, respectively, admits of two families of symmetric, 
nearly elliptical, periodic orbits for all values of the eccentricities es(O < I es I < 1), with the possible 
exception of a finite number of critical values. The orbit of a planet Ps lies in an O(Ixv3)-neighbourhood 

Fig. 2. 
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of the planes II s and is described by formulae (6.12) or (6.13), and all the planes pass through the same 
fixed straight linemthe line of nodes; the angle 9s - tp/between the planes l-I s and H i is arbitrary. The 
average motions along the orbits equal the average motions along the ellipses (6.4) or (6.5) and relate 
to one another as natural numbers; the motion of the whole system is periodic. At times a multiple of 
a half-period all the planets in the first family lie along the line of nodes (a parade of planets); in the 
second family, they intersect the same fixed plane, which contains the apsidal curves in the unperturbed 
problem (g = 0). 

It is clear that in the second family of orbits as well the planets P1 . . . . .  P,v may form a straight line 
at times that are multiples of the half-period (Fig. 2). Up to terms of the order of !11/3 the distance SPs 
at these times is equal to as(1 + es), while in the case when es > 0 the planet Ps in a generating solution 
traverses the apocentre, otherwise~the pericentre. If the straight line L on which the planets are situated 
makes an angle T with the n axis, then 

a s (1 + e s )  = sin('/+ tpt ) 
al(1 + el) sin(T +tp~) 

In the course of one half-period the planets will generally not line up again in a straight line. This is 
illustrated by Fig. 2, in which el < 0, es > 0, ej > 0. Consequently, for the second family of orbits, 
a parade of planets is observed at times that are multiples of the period 2~/to. Only in the case es = el 
(s = 2 . . . . .  N) is a parade of planets observed twice in one period. 

I wish to thank V. V. Rumyantsev, who drew my attention to the phenomenon of resonance in the 
Solar system. 
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